Best Mechanical engineering tutorials UNITS AND CONSTANT

UNITS AND CONSTANT

Definitions:
Nominal size:
            The size designation used for general identification. The nominal size of a shaft and a hole are the same. This value is often expressed as a fraction.
Basic size:
            The exact theoretical size of a part.  This is the value from which limit dimensions are computed.  Basic size is a four decimal place equivalent to the nominal size. The number of significant digits imply the accuracy of the dimension.
example: nominal size = 1 1/4
basic size = 1.2500
Design size:
            The ideal size for each component (shaft and hole) based upon a selected fit. The difference between the design size of the shaft and the design size of the hole is equal to the allowance of the fit. The design size of a part corresponds to the Maximum Material Condition (MMC). That is, the largest shaft permitted by the limits and the smallest hole. Emphasis is placed upon the design size in the writing of the actual limit dimension, so the design size is placed in the top position of the pair. 
Tolerance: 
            The total amount by which a dimension is allowed to vary. For fractional linear dimensions we have assumed a bilateral tolerance of 1/64 inch. For the fit of a shaft/hole combination, the tolerance is considered to be unilateral, that is, it is only applied in one direction from design size of the part.Standards for limits and fits state that tolerances are applied such that the hole size can only vary larger from design size and the shaft size smaller.
Basic hole system:
            Most common system for limit dimensions.  In this system the design size of the hole is taken to be equivalent to the basic size for the pair (see above). This means that the lower (in size) limit of the hole dimension is equal to design size. The basic hole system is more frequently used since most hole generating devices are of fixed size (for example, drills, reams, etc.) When designing using purchased components with fixed outer diameters (bearings, bushings, etc.) a basic shaft system may be used.
Allowance:
            The allowance is the intended difference in the sizes of mating parts. This allowance may be: positive (indicated with a "+" symbol), which means there is intended clearance between parts; negative("-"), for intentional interference: or "zero allowance" if the two parts are intended to be the "same size".  
Base and Supplementary Units
QuantityUnitSymbol
Lengthmeterm
Masskilogramkg
Timeseconds
Electric currentampereA
Thermodynamic temperatureKelvinK
Luminous intensitycandelacd
Molecular substancemolemol
Plane angleradianrad
Solid anglesteradiansr
Derived Units
QuantityUnitSymbol
Space and Time
Areasquare meter
Volumecubic meter
Velocitymeter per secondm/s
Accelerationmeter per second per secondm/s²
Angular velocityradian per secondrad/s
Angular accelerationradian per second per secondrad/s²
FrequencyhertzHz (cycle/s)
Rotational speedrevolution per second
revolution per minute
r/s
r/m
Mechanics
Densitykilogram per cubic meterkg/m³
Momentumkilogram meter per secondkg·m/s
Moment of inertiakilogram meter squaredkg·m³
ForcenewtonN (kg·m/s²)
Torque, moment of forcenewton meterN·m
Energy, work, heat quantityjouleJ (N·m)
PowerwattW (J/s)
Pressure, stresspascalPa (N/m²)
Heat
Customary temperaturedegree Celsius°C
Thermal conductivitywatt per meter KelvinW/(m·K)
Entropyjoule per KelvinJ/K
Specific heatjoule per kilogram KelvinJ/(kg·K)
Light
Luminous fluxlumenlm (cd·sr)
Illuminationluxlx (lm/m²)
Luminancecandela per square metercd/m²
Viscosity
Kinematic viscositysquare meter per secondm²/s
Dynamic (absolute) viscositypascal secondPa·s

QuantityEquivalentDimensionsS.I. units
Mass MKilogram (kg)
Length LMetre (m)
Time TSecond (s)
Frequencycycles/unit timeT-1Hertz (Hz)
Arealength x widthL2m2
Volumelength x height x widthL3m3
DensityMass/unit volumeML-3kg/m3
VelocityDistance/unit timeLT-1m/s
AccelerationVelocity/unit timeLT-2m/s2
Forcemass x accelerationMLT-2Newton
Weightmass x gravitational acceleration MLT-2Kilogram 
Pressure or Stressforce/unit areaML-1T-2Pascal (Pa)
Moment of Inertiamass x length2ML2kg m2
Workforce x distanceML2T-2Joule (J)
EnergyWork capacityML2T-2Joule (J)
Potential Energymass x gravitational acceleration x height raisedML2T-2Joule (J)
Kinetic Energy1/2 mass x velocity2ML2T-2Joule (J)
PowerWork/unit timeML2T-3Watt (W)
MomentumMass x velocityMLT-1 
CONVERSIONS
Millibar (mb): 1 mb = 100 Pa; 1 Pa = 0.01 mb
Celsius: oC = K – 273.15; K = oC + 273.15
Fahrenheit: oF = 9/5(oC) + 32; oC = 5/9(oF-32)  
USEFUL NUMERICAL CONSTANTS
Universal Gas Constant (R)                                                                                8.3143 J K-1 mol-1
Stefan-Boltzmann constant (s)                                                                          56.696 x 10-9 W m-2 K-4
Planck constant (h)                                                                                              0.66262 x 10-33 J s
Velocity of light (c)                                                                                              299.8 x 106 m s-1
Wien’s constant                                                                                                  2897 mm
Acceleration due to gravity                                                                               9.80665 m s-2 
Molecular weight of dry air                                                                                28.97 g mol-1
Density of dry air                                                                                                 1.209 kg m-3
Specific heat of air at constant pressure (Cp)                                                  1004 J K-1 kg-1
Gas constant for dry air (Rd)                                                                               287 J kg-1 K-1
Standard atmospheric pressure                                                                         101.3 kPa 
Gas constant for water vapor (Rv)                                                                     461 J kg-1 K-1
Specific heat of water vapor at constant pressure                                         1952 J K-1 kg-1

Previous
Next Post »
Thanks for your comment